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We investigate viscous fingering instabilities of the double-front system which results
when fluid is injected into a porous medium containing fluid of a different composition
and temperature. We describe a linear stability analysis based on an eigenfunction
expansion method which enables us to investigate the structure of the discrete
eigenvalue spectrum. We investigate the extent to which the properties of each front
contribute to the tendency of the system to become unstable: we find that instabilities
on the compositional front dominate because of the high ratio of thermal to solute
diffusion. It is difficult for a stable compositional front to stabilize an unstable thermal
front; however, this situation can result in a new fingering phenomenon in which the
perturbations undergo coupled oscillations of growing amplitude.

1. Introduction
When fluid is injected into a porous medium which is already saturated with native

fluid of a different temperature and composition, two travelling fronts develop. The
first (the compositional front or fluid front) is the interface between injected and
ambient fluid; depending on the properties of the fluids, this may be an immiscible
front upon which capillary forces act, or a miscible front across which mechanical
dispersion and molecular diffusion blend the fluid properties. The second front is the
thermal front, which represents the point where the temperature of the fluid changes
from the injectate temperature to the ambient temperature. Assuming local thermal
equilibrium, the thermal front must travel more slowly than the fluid front, because
heat must be shared with the porous matrix as well as with the fluid. This front
is never sharp, because heat is redistributed across the front by dispersion and by
diffusion through both the fluid and the solid phases.

In general, the mechanical properties of a fluid depend on both its composition and
its temperature. In particular, we may expect the viscosity to change across each front,
and this means that a fingering instability (Saffman & Taylor 1958; Homsy 1987)
may develop on either front. The growth rate and preferred scale of the instability on
each front is controlled by the viscosity contrast and by the diffusive redistribution of
properties across the front; additionally, the dynamics of the two fronts are coupled,
because each front is affected by the perturbations induced by the instability on the
other front.

This process is of interest as a fundamental problem in fluid dynamics, with the
feature that two instabilities with different preferred scales are strongly coupled. It
also has direct applications to a variety of industrial and environmental processes
where one fluid is injected into a reservoir of another: examples include enhanced
oil recovery (Latil 1980) and geothermal reservoir recharge (Stefánsson 1997; Woods
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1999). Additionally, this study provides a necessary precursor to investigating the
stability of flow- and thermally driven chemical reaction fronts in porous media
(Phillips 1991; French 2002; Jupp & Woods 2003), with wide-ranging applications in
chemical and reservoir engineering as well as its intrinsic geological interest.

In this paper, we investigate the linear stability of the double-front system in the
case in which the fluid front is miscible. This builds on a substantial literature on
the instabilities of miscible fronts in porous media and Hele-Shaw cells, of which we
summarize only a few of the more relevant studies here.

The first detailed analyses of the linear stability of a fluid front with miscible proper-
ties were carried out by Tan & Homsy (1986, 1987). Tan & Homsy (1986) considered
rectilinear flow, and employed a quasi-steady approximation in which the growth
rate of instabilities was asymptotically much faster than the rate of change of the
background state: this allowed a favoured unstable wavelength to be identified at any
point in ‘frozen time’. A large number of studies have built on this approach, including
effects such as buoyancy contrasts, tangential shear and non-Newtonian rheologies
(Rogerson & Meiburg 1993; Manickam & Homsy 1995; Azaiez & Singh 2002).

Tan & Homsy (1987) considered the miscible displacement front resulting from
radial injection. In this geometry, the basic state is dimensionally degenerate (in a
sense which will be specified below), and as a result it is possible to transform the
problem into similarity variables and abandon the quasi-steady assumption. This is
an important difference, since experimental evidence suggests that in many situations
the growth rate of instabilities is too small for the quasi-steady approximation to be
valid, especially at early times when the diffusive front spreads rapidly.

Recently, Ben, Demekhin & Chang (2002) developed a method to circumvent the
quasi-steady assumption for rectilinear flow by projecting the streamwise structure of
the perturbation onto a suitable set of eigenfunctions. The key to this approach is
that the first eigenfunction in the set describes an infinitesimal advance or delay of the
spreading front, and it can be shown (Barenblatt 1996, § 8.3) that such perturbations
to a self-similar solution can persist whereas all other forms of perturbation decay.
Consequently, this single eigenfunction comes to dominate the structure of any
growing perturbation, and Ben et al. employed this dominance to obtain asymptotic
results for the linear stability of the front.

It is possible to develop a similar eigenfunction decomposition for radial flow,
and this is the approach taken in the current paper. While it is no longer necessary
to circumvent the quasi-steady assumption, the eigenfunction decomposition still
has advantages over the usual semi-numerical approach. First, it makes explicit
the physical meaning of the perturbation, which to leading order represents an
infinitesimal advance or delay of the spreading front, as for immiscible displacements.
Second, it naturally identifies not just a single perturbation growth rate but a complete
spectrum.

The spectrum of growth rates is of particular interest in the light of the study
by Cardoso & Woods (1995), who considered the stability of an expanding annulus
of fluid formed by the sequential injection of immiscible fluids into a Hele-Shaw
cell. In this study, distinct ‘varicose’ and ‘sinuous’ modes of instability were found,
and the two modes could become unstable simultaneously. Although the stabilizing
mechanisms and the precise geometry are different in the current study, the coupling
of the instabilities on the two fronts is similar in several respects: we consider this
similarity in § 3.

The current problem also has similarities to that investigated by Manickam &
Homsy (1993), who considered situations in which the viscosity is a non-monotonic
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Figure 1. Schematic of ‘double-front’ structure for miscible fluids: solid line represents solute
concentration c while dashed line represents temperature T̂ . (a) Front structure with thermal
and solute diffusion; (b) ‘thin front’ approximation (§ 3).

function of solute concentration. However, the current study differs from this because
the thermal and fluid properties diffuse and are advected at different rates, and this
significantly affects the coupling of the frontal instabilities.

In § 2 we formulate the problem, and identify the governing dimensionless
parameters. In § 3, we consider a schematic version of the problem in which the radial
structure of the fronts is neglected. This demonstrates how the coupling between the
instabilities is controlled by the relative speeds of the fronts and by the azimuthal
wavelength of the perturbation. Section 4 describes the eigenfunction decomposition
method used to set up the linear problem, and in § 5 we describe the results obtained
using this approach for a number of physically interesting cases. In particular, we
demonstrate how instabilities can come to be dominated by the properties of either
the thermal or the fluid front, and we discuss the ability of one front to stabilize or
destabilize the other. We summarize our findings in § 6.

2. Formulation
We consider the two-dimensional flow that results from the injection of fluid into

a horizontal layer from a line source at position r̂ = 0; the azimuthal coordinate
is denoted by θ . We describe the fluid composition in terms of a notional solute
concentration c, which varies from 0 in the injected fluid to 1 in the ambient
fluid, and we describe the fluid motion in terms of a transport velocity û = (ûr , ûθ ).
(Throughout, dimensional variables are denoted by a caret and dimensionless variables
are unadorned.)

The fluid is injected at a constant areal flux Q̂ and with temperature T̂ 0 and
viscosity µ̂0, while the ambient fluid far from the injection point has temperature T̂ ∞
and viscosity µ̂∞. We assume that the grain size of the porous matrix is sufficiently
small that the fluid and the matrix are in local thermal equilibrium with temperature
T̂ . Figure 1 illustrates the double-front structure which results once the flow has
become established.
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The governing equations are given by mass conservation and Darcy’s law in the
radial and azimuthal directions,

1

r̂

∂

∂r̂
(r̂ ûr ) +

1

r̂

∂ûθ

∂θ
= 0,

∂p̂

∂r̂
= − µ̂

k̂
ûr ,

1

r̂

∂p̂

∂θ
= − µ̂

k̂
ûθ (2.1)

(where k̂ is the permeability of the porous medium), together with advection–diffusion
equations for temperature T̂ and for the concentration of solute c:

∂T̂

∂t̂
+

λ

φ
∇̂ · (ûT̂ ) = κ̂T ∇̂2T̂ ,

∂c

∂t̂
+

1

φ
∇̂ · (ûc) = κ̂c∇̂2c. (2.2)

Here κ̂T and κ̂c are the effective diffusivities of heat and solute respectively: the ratio
E ≡ κ̂T /κ̂c is the Lewis number, which (following Jupp & Woods 2003) we expect to
be much greater than unity. The parameter λ quantifies the thermal lag effect in a
porous medium, and is defined as

λ =
φt ρ̂fluidĈfluid

φt ρ̂fluidĈfluid + (1 − φt )ρ̂matrixĈmatrix

< 1 (2.3)

(Jupp & Woods 2003). Here the total porosity of the matrix is denoted by φt , and ρ̂

and Ĉ are the density and specific heat capacity of each phase. (We will denote the
effective porosity, i.e. the fraction of connected void space, by φ.)

We assume that the changes to fluid density are sufficiently small that ρ̂fluid and λ
may be regarded as constants. However, the fluid viscosity µ̂ is taken to be a function
of both temperature T̂ and concentration c.

2.1. Non-dimensionalization and basic states

Since Q̂, κ̂T and κ̂c have the same dimensions, there is no way to define intrinsic
length- and timescales. To non-dimensionalize, then, we define an arbitrary lengthscale
r̂0 and a corresponding timescale t̂0 = 2πr̂2

0/Q̂. The value of r̂0 is immaterial, as the
self-similarity of the basic solutions means that it can be eliminated by a simple
rescaling (cf. Tan & Homsy 1987; Riaz & Meiburg 2003).

We define

r =
r̂

r̂0

, t =
t̂

t̂0
, ur =

ûr t̂0

r̂0φ
, uθ =

ûθ t̂0

r̂0φ
,

T =
T̂ − T̂ 0

T̂ ∞ − T̂ 0

, µ =
µ̂

µ̂0

, p = p̂
2πk̂

µ̂0φQ̂




(2.4)

to obtain the non-dimensionalized governing equations
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∂T

∂t
+ λ

[
1

r

∂(rurT )

∂r
+

1

r

∂(uθT )

∂θ

]
=

1

PT

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2

∂2T

∂θ2

]
, (2.6)
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where

PT =
Q̂

2πκ̂T

, Pc =
Q̂

2πκ̂c

. (2.8)



The instability of thermal and fluid fronts 137

PT and Pc are the thermal and fluid Péclet numbers, which represent the ratio of
advective to diffusive transport of heat and solute respectively.

We impose boundary conditions in the far field as r → ∞ and at the origin r = 0,
noting that the experiments of Woods & Fitzgerald (1997) have demonstrated that
the similarity solution which gives the basic state for our analysis provides a good
description of the injection process, and the flow rapidly becomes independent of the
finite injection pipe width r = r1.

For constant-flux injection, the boundary conditions in non-dimensional form are
that

T = 0 and c = 0 at r = 0, lim
r→0

rur = 1, (2.9)

T → 1 and c → 1 as r → ∞. (2.10)

The basic state which satisfies these conditions is taken to be independent of θ: it is
given by urb = 1/r , and hence

Tb(r, t) =
1

KT

∫ ζ

0

e−PT uuλPT /2−1 du, where KT =
�
(

1
2
λPT

)
P

λPT /2
T

, (2.11)

cb(r, t) =
1

Kc

∫ ζ

0

e−PcuuPc/2−1 du, where Kc =
�
(

1
2
Pc

)
P

Pc/2
c

, (2.12)

where we have defined the similarity variable

ζ =
r2

4t
. (2.13)

In equations (2.11) and (2.12), �(x) is the standard gamma function: we note that
Tb and cb can be expressed in terms of incomplete gamma functions.

The quantities Tb and cb are positive everywhere, varying from 0 at the injection
point to 1 in the far field. (Because we have normalized temperature by the quantity
T̂ ∞ − T̂0, which may be positive or negative, T is not necessarily of the same sign
as T̂ − T̂ 0.) The fluid front is centred around ζ = 1

2
, with its width in ζ -space

proportional to P −1/2
c ; the thermal front is centred around ζ = 1

2
λ, with its width in

ζ -space proportional to P
−1/2
T .

Finally, we specify the dependence of viscosity on temperature and concentration.
Following previous studies from Tan & Homsy (1987) onwards, we assume that
the viscosity µ varies exponentially with both the temperature and the solute
concentration,

µ = exp(−βT T − βcc). (2.14)

The exponents βT and βc may be positive or negative. Negative values represent
more-viscous fluid ahead of the front (and are therefore associated with instability);
positive values represent less-viscous fluid ahead of the front.

3. The thin-front stability problem
Before formulating the full stability problem, we consider briefly the limiting case

in which we neglect both diffusion and the radial structure of the background state,
retaining only the destabilizing Saffman–Taylor mechanism and the coupling through
the velocity field. These results demonstrate how the parameters λ and m control the



138 D. Pritchard

instability, and suggest some points which are useful in the physical interpretation of
the results.

The structure considered in this section is illustrated in figure 1(b). The dimen-
sionless viscosity of the fluid at the source is given by µ = µ0 = 1; the viscosity in
the far field is given by µ = µ∞ = e−βT −βc , and the viscosity between the fronts is
given by µ = µ1 = e−βT . (For convenience we also define the mobilities Mi = µ−1

i .) The

fluid front is located at r = rF (t), and it is simple to show that rF (t) =
√

2t , while the
thermal front is located at r = rT (t) =

√
2λt .

We may employ the analysis by Paterson (1981) to obtain results for the stability
of the fronts when coupling between them, as well as stabilizing effects such as
diffusion and surface tension, are neglected. If the front positions are perturbed
to rT (θ, t) =

√
2λt + εA(t)eimθ and rF (θ, t) =

√
2t + εB(t)eimθ , where ε � 1 is the

perturbation parameter and m is the azimuthal wavenumber, then the amplitudes A(t)
and B(t) grow algebraically with time, A(t) ∼ B(t) ∼ tω, in contrast to the exponential
growth to be expected in a planar geometry. This means that the instability develops
more slowly relative to the change of the background state, and that the most unstable
wavenumber becomes dominant more gradually.

The growth rate on a front advancing as dr/dt = λ/r(t) with viscosity µi behind
and µj ahead is given by

ωij (m) =
1

2

[
m

µj − µi

µj + µi

− 1

]
. (3.1)

We note that this result is independent of λ, because this factor occurs both in the
denominator of ωij (through the radius of the front) and in the numerator, through
the advective velocity driving the instability. Equation (3.1) differs from the Saffman–
Taylor result for a planar front, because the velocity which forces the instability
weakens as the front spreads.

To address the double-front problem, we follow the analysis of Cardoso & Woods
(1995), with the exception that the kinematic condition at the thermal front is
now given by drT /dt = λur (rT , t). Applying the matching conditions on pressure
and velocity across the interfaces in the absence of surface tension, we may obtain
equations for the interface perturbation amplitudes A(t), B(t) of the form

t
dA

dt
= C11(m)A + C12(m)B, t

dB

dt
= C21(m)A + C22(m)B, (3.2)

with solutions proportional to tω± , where

ω± = 1
2

[
C11 + C22 ±

√
C2

11 + C2
22 − 2C11C22 + 4C12C21

]
. (3.3)

The coefficients Cij (m) are given in Appendix A.
We may also obtain the eigenvectors (A, B) which correspond to these eigenvalues.

The quantities (A/B)±, which represent the ratio of the magnitudes of the
perturbations on the thermal and fluid fronts, are given by(

A

B

)
±

=
C11 − C22 ±

√
C2

11 + C2
22 − 2C11C22 + 4C12C21

2C21

. (3.4)

If (A/B) > 0, the perturbations on the thermal and fluid fronts are in phase, giving the
annulus of fluid between the fronts a sinuous structure (as described by Cardoso &
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Woods 1995). Conversely, if (A/B) < 0, the perturbations are out of phase, corres-
ponding to a varicose perturbation to the annulus.

Some representative cases are shown in figures 2 and 3.
The coupling of the instabilities is controlled by λ, which dictates the spatial

separation of the fronts, and m, which determines the spatial scale of the velocity
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perturbation on each front. At low m and high λ there are strongly coupled ‘global’
modes, while at high m or low λ the perturbations become strongly localized around
the fronts, and the eigenvalues ω± asymptote to the single-thin-front growth rates
(3.1) on each front. (When diffusion is included in the problem, we may expect that
this will alter the growth rates most for high m, and so equation (3.1) may never
provide an accurate estimate of the growth rate.)

Specifically, the asymptotic behaviour of the eigenvalues is given by

ω+ ∼ max
(
ω0∞, − 1

2

)
and ω− ∼ min

(
ω0∞, − 1

2

)
as m → 0, (3.5)

ω+ ∼ max
(
ω01, ω1∞

)
and ω− ∼ min

(
ω01, ω1∞

)
as m → ∞. (3.6)

When both fronts are unstable, ω+ corresponds to a sinuous instability of the
annulus and ω− to a varicose instability; when only one front is unstable, both
eigenvalues correspond to sinuous modes. For the special case of global instability
when ω01 = ω1∞, the eigenvalues ω± again correspond to sinuous and varicose
perturbations respectively, but no longer localize on one interface or the other;
rather, they represent the odd and even parts of a global perturbation of the annulus.

We can also use the result (3.3) to show that only real growth rates are permitted:
the details are given in Appendix A. We will return to this point in § 5.3.2.

A final point which these results raise is the question of neutral stability. The
algebraic growth rates described above are expressed in terms of the perturbation
to the radial positions of the fronts rT (t) and rF (t). When the problem including
diffusion is considered, it is natural to work in terms of the similarity variable
ζ = r2/(4t) (compare e.g. Tan & Homsy 1987), in which case the front positions are
given by

ζT (t) =
1

2
λ + ε

A(t)

(2t)1/2
eimθ , ζF (t) =

1

2
+ ε

B(t)

(2t)1/2
eimθ . (3.7)

Consequently, the growth rate of the perturbation to the front is different depending
on whether it is viewed in the physical coordinates (r, t) or the similarity variables
(ζ, t).

To interpret the results for the growth rate, then, it is useful to have two definitions
of instability in mind: either ω > 0, so the absolute size of the perturbations to the
front position grows, or ω > 1

2
, so the perturbations grow relative to the radius of

the front. (The latter definition is employed by Tan & Homsy 1987.) This distinction
does not arise in the case of a rectilinear front, because there is no longer a changing
lengthscale perpendicular to the front.

Additionally, when we compare the discussion of a unidirectional diffusing front
(see Barenblatt 1996, § 8.3), this suggests a third way of interpreting the growth rate.
Barenblatt’s general definition of the stability of an invariant solution suggests (as
we shall see) that the perturbation as m → 0 may be regarded as neutrally stable. In
the current geometry, this would lead to a stability criterion of ω > − 1

2
; for a planar

front, it would again coincide with ω = 0. This third definition has the advantage that
it makes the interpretation of the eigenvalue spectrum ω(m) similar to that for the
unidirectional front. It also provides the most cautious definition of stability, and we
will use it when discussing the structure of the eigenvalue spectrum is subsequent
sections; however, this subtlety of the physical interpretation should be borne in mind
throughout.
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4. The full linear stability problem
We now consider the full linearized stability problem when diffusion is included. We

first formulate a perturbation expansion, and then describe the radial decomposition
of the perturbation structure in terms of an appropriate set of eigenfunctions.

4.1. Perturbation expansion

We define a small parameter ε � 1, and seek expansions of the form

ur = urb + εeimθU1(r, t), uθ = εeimθW1(r, t), T = Tb + εeimθT1(r, t),

c = cb + εeimθC1(r, t), µ = µb + εeimθM1(r, t), p = pb + εeimθP1(r, t),

}
(4.1)

where the real parts of these expressions are assumed, and where we have defined
the quantity M1(r, t) for convenience in what follows, although viscosity cannot be
perturbed independently of T and c. We employ the periodicity of the disturbance
in the azimuthal direction to expand it in Fourier modes, with wavenumbers m ∈ �,
and we will employ a representation of the radial structure which allows disturbances
to be localized in r . We do not consider perturbations in the vertical direction, since
the work of Riaz & Meiburg (2003) suggests that the presence of these perturbations
does not alter the basic dynamics of miscible instability, but incorporating them does
complicate the analysis substantially.

The boundary conditions are that the perturbations to the temperature and
solute concentration fields vanish at the point of injection and far from the front;
additionally, the perturbation to the radial flux of fluid, 2πrU1, must vanish in these
limits (which is equivalent to requiring that the pressure perturbation P1 must vanish).
These can be written as

T1 → 0
C1 → 0
rU1 → 0


 as r → 0 and as r → ∞. (4.2)

We may substitute the perturbations (4.1) into the non-dimensionalized governing
equations (2.5), (2.6) and (2.7), expand in powers of ε, and eliminate W1 and P1 to
obtain

∂

∂r

[
rU1µb + r2 ∂U1

∂r
µb

]
= m2µbU1 + m2 M1

r
. (4.3)

The advection–diffusion equations for temperature and solute concentration may
also be expanded to first order in ε to yield

∂T1

∂t
+ λ

(
U1

∂Tb

∂r
+

1

r

∂T1

∂r

)
=

1

PT

[
1

r

∂

∂r

(
r
∂T1

∂r

)
− m2

r2
T1

]
, (4.4)

∂C1

∂t
+

(
U1

∂cb

∂r
+

1

r

∂C1

∂r

)
=

1

Pc

[
1

r

∂

∂r

(
r
∂C1

∂r

)
− m2

r2
C1

]
. (4.5)

We now define new dependent variables. First, the form of the boundary conditions
(4.2) on U1 suggests that we define a new quantity proportional to rU1; in addition,
motivated by the transformation which will be required in § 4.2, we divide all the
dependent quantities through by t , defining

Υ (r, t) = rtU1, Θ(r, t) = tT1, χ(r, t) = tC1, N (r, t) = tM1. (4.6)



142 D. Pritchard

We then transform to the independent variables (ζ, t), where ζ is defined by equation
(2.13), and employ the expressions (2.11) and (2.12) to obtain the equations

∂

∂ζ

[
ζµb(ζ )

∂Υ

∂ζ

]
=

1

4
m2µb(ζ )

Υ

ζ
+

1

4
m2 N

ζ
, (4.7)

t
∂Θ

∂t
= LT Θ − 1

4

m2

PT

Θ

ζ
− 1

2
λΥ

1

KT

e−PT ζ ζ λPT /2−1, (4.8)

t
∂χ

∂t
= Lcχ − 1

4

m2

Pc

χ

ζ
− 1

2
Υ

1

Kc

e−Pcζ ζ Pc/2−1, (4.9)

where the operators LT and Lc are defined by

LT ≡
[

ζ

PT

∂2

∂ζ 2
+

(
1

PT

− λ

2
+ ζ

)
∂

∂ζ
+ 1

]
, Lc ≡

[
ζ

Pc

∂2

∂ζ 2
+

(
1

Pc

− 1

2
+ ζ

)
∂

∂ζ
+ 1

]
.

(4.10)

Finally, by substituting T = Tb + εeimθT1 and c = cb + εeimθC1 into equation (2.14)
and expanding in ε, we obtain

µ ∼ µb + εeimθµb[−βT T1 − βcC1], (4.11)

and so

M1 = −µb[βT T1 + βcC1], i.e. N = −µb[βT Θ + βcχ]. (4.12)

Additionally, we have

∂µb

∂ζ
=

∂µ

∂T

∂Tb

∂ζ
+

∂µ

∂c

∂cb

∂ζ
= −βT µb

∂Tb

∂ζ
− βcµb

∂cb

∂ζ
(4.13)

and so, substituting these expressions into equation (4.7) and dividing through by
µb(ζ ), we obtain

∂

∂ζ

[
ζ

∂Υ

∂ζ

]
−
(

βT

∂Tb

∂ζ
+ βc

∂cb

∂ζ

)[
ζ

∂Υ

∂ζ

]
=

1

4
m2 Υ

ζ
− 1

4
m2 1

ζ
[βT Θ + βcχ] . (4.14)

4.2. Radial eigenfunctions

We will approach the linearized problem defined above by decomposing the radial
structure of the perturbations to temperature and concentration into a series of radial
eigenfunctions.

A natural basis for this decomposition can be developed, following Ben et al. (2002)
and Barenblatt (1996), by investigating the stability of the similarity solutions for T

and c when there is no azimuthal flow (i.e. in the limit m → 0). For convenience,
we derive the eigenfunctions for the temperature perturbation first, noting that the
result for the concentration perturbation will follow immediately by setting λ=1 and
PT =Pc.

We consider the purely axisymmetric temperature field driven by radial injection,
which is governed by the equation

∂T

∂t
+ λ

1

r

∂T

∂r
=

1

PT

1

r

∂

∂r

(
r
∂T

∂r

)
. (4.15)
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We seek localized solutions to (4.15), which vanish at r = 0 and as r → ∞. We use
the fact that if T is a solution of (4.15), so is ∂T /∂t:

∂Tb

∂t
(r, t) ∝ 1

t
e−PT ζ ζ λPT /2, (4.16)

and it is simple to verify by direct substitution that T = e−PT ζ ζ λPT /2t−1 has the desired
properties.

Adding a perturbation εT1 = ε∂T /∂t to the basic solution Tb corresponds physically
to changing the time-origin of the basic solution infinitesimally; in other words, to
advancing or retarding the spreading front slightly. This is the key to the eigenfunction
approach, since (following Barenblatt 1996, § 8.3) we expect such perturbations to a
self-similar basic state to be neutral, whereas all other forms of perturbation will
decay in time. Hence it is plausible that this eigenfunction will come to dominate the
structure of the most unstable mode. (We note that this also provides a connection to
the ‘thin-front’ approach of § 3, where the retardation or advancement of the fronts
is considered explicitly.)

The form of ∂T /∂t suggests that we write (4.15) in terms of the independent
variables (ζ, t) and define T = ξ (ζ, t)t−1. This transforms (4.15) to the equation

t
∂ξ

∂t
= LT ξ, (4.17)

with solutions of the form ξj (ζ, t) = t νj φj (ζ ) where φj (ζ ) satisfies the eigenfunction
equation

LT φj = νjφj . (4.18)

Provided we have a suitable spectrum of eigenfunctions for the operator LT with the
associated boundary conditions, we can then represent any localized initial disturbance
at t = 1 in terms of these eigenfunctions, and predict its evolution by allowing them
to evolve as t νj . We note that we have already obtained one of these eigenfunctions,
φ0 = e−PT ζ ζ λPT /2, which corresponds to the eigenvalue ν0 = 0.

The problem is now to obtain the remaining eigenfunctions. The form of φ0(ζ )
suggests that we seek solutions of the form φj (ζ ) = e−PT ζ ζ λPT /2fj (ζ ), which guarantees
that φj (ζ ) will satisfy the boundary conditions as long as fj is well-behaved at ζ =0
and as ζ → ∞. Substituting this into equation (4.18), we obtain an associated Laguerre
equation (Arfken & Weber 1995), and thus the eigenfunctions

φj (ζ ) = e−PT ζ ζ λPT /2L
(λPT /2)
j (PT ζ ) for − νj = j = 0, 1, 2, . . . (4.19)

where L
(k)
j (x) are the associated Laguerre polynomials.

Figure 4 shows the form of the eigenfunctions φj (ζ ) for two values of PT . The
function corresponding to the radial mode number j in general oscillates j times;
in particular, the eigenfunction φ0(ζ ) consists of a single ‘hump’ centred around the
front. The typical length associated with the oscillations reduces as j increases; hence,
we may expect that for large values of m the lateral perturbations force the lower
radial modes more strongly, since the lateral and radial lengthscales will then be
comparable. As PT increases, the width of the front in ζ -space decreases roughly
as P

−1/2
T . Consequently, the eigenfunctions for higher PT are more strongly localized

around the centre of the diffusive front.
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Figure 4. Eigenfunctions φj (ζ ) for λ= 0.5: (a) PT = 5 and (b) PT = 50, for j = 0 to 5.

The orthogonality relation for the set {φj } is readily obtained from that for the
associated Laguerre polynomials, and is given by

〈φp, φq〉
T

≡
∫ ∞

0

ePT ζ ζ −λPT /2φp(ζ )φq(ζ ) dζ =
1

P
λPT /2+1
T

�
(
p + 1

2
λPT + 1

)
�(p + 1)

δp,q, (4.20)

where δp,q is the Kronecker delta (which we employ without invoking the summation
convention). The set of eigenfunctions {φj (ζ )} is complete with respect to sufficiently
strongly localized disturbances to the temperature field, and is therefore a suitable
basis for our perturbation analysis.

We have now obtained the important result that all eigenvalues of (4.18) are non-
positive. This means physically that all purely radial disturbances to the temperature
field must decay: the solution is therefore linearly stable to instantaneously imposed,
axisymmetric perturbations. The least strongly decaying mode, φ0(ζ ), represents an
infinitesimal change of the time-origin of the basic solution; in other words, to
infinitesimally advancing or retarding the position of the front. This will be of
importance later in interpreting the radial structure of unstable (non-axisymmetric)
perturbations.

Carrying out the corresponding analysis for the solute concentration field, we obtain
the eigenfunction equation Lcψj = νjψj , and hence the spectrum of eigenfunctions

ψj (ζ ) = e−Pcζ ζ Pc/2L
(Pc/2)
j (Pcζ ), where j = 0, 1, 2, . . . (4.21)

with the orthogonality relation

〈ψp, ψq〉
c

≡
∫ ∞

0

ePcζ ζ −Pc/2ψp(ζ )ψq(ζ ) dζ =
1

P
Pc/2+1
c

�
(
p + 1

2
Pc + 1

)
�(p + 1)

δp,q . (4.22)

Finally, for numerical convenience, we define rescaled eigenfunctions

Φp(ζ ) = Gpφp(ζ ), Ψq(ζ ) = Hqψq(ζ ), (4.23)

where an appropriate choice of the prefactors Gp and Hq (see Appendix B) allows us
to avoid the computational problems caused by the rapid decay of φp and ψq with
increasing Péclet numbers and eigenmode numbers. (Note that different rescalings
were used for different ranges of the Péclet numbers: the effect of this rescaling is
apparent in the amplitude of the perturbations plotted in § 5.)



The instability of thermal and fluid fronts 145

4.3. Setting up the eigenvalue problem

4.3.1. Radial decomposition

For a given value of the azimuthal wavenumber m, we decompose the radial
structure of the temperature and solute perturbations in terms of the appropriate
eigenfunctions,

Θ(ζ, t) =

∞∑
p=0

AT
p (t; m)Φp(ζ ), χ(ζ, t) =

∞∑
q=0

Ac
q(t; m)Ψq(ζ ). (4.24)

We now exploit the linearity of equation (4.14) and write

Υ (ζ, t) =

∞∑
p=0

AT
p (t; m)�T

p (ζ ) +

∞∑
q=0

Ac
q(t; m)�c

q (ζ ), (4.25)

where �T
p (ζ ) and �c

q (ζ ) satisfy the equations(
∂

∂ζ

[
ζ

∂

∂ζ

]
−
[
βT

∂Tb

∂ζ
+ βc

∂cb

∂ζ

] [
ζ

∂

∂ζ

]
− 1

4

m2

ζ

){
�T

p

�c
q

}
=

1

4

m2

ζ

{
βT Φp

βcΨq

}
, (4.26)

both subject to the boundary conditions �T,c
p,q (0) = 0 and �T,c

p,q (ζ ) → 0 as ζ → ∞.

These equations were integrated numerically to obtain �T,c
p,q (ζ ): details are given in

Appendix B.

4.3.2. Amplitude evolution equations

We construct evolution equations for the amplitudes AT
p (t) and Ac

q(t) by taking
the inner products 〈·, ·〉T and 〈·, ·〉c of equations (4.8) and (4.9) with the radial
eigenfunctions Φj (ζ ) and Ψj (ζ ) respectively. We obtain the coupled amplitude
evolution equations

t
dAT

j

dt
=

∞∑
p=0

QT T
j,pAT

p +

∞∑
p=0

QT c
j,pAc

p, t
dAc

j

dt
=

∞∑
p=0

QcT
j,pAT

p +

∞∑
p=0

Qcc
j,pAc

p, (4.27)

where the coefficients Qkl
j,p , where k, l = T or c, are given by equations (C 22) to

(C 25), and the details of the construction are described in Appendix C.
Finally, we write this linear system as a single matrix equation. Defining

Br (t) =

{
AT

r/2 for r even,

Ac
(r−1)/2 for r odd,

(4.28)

we can write the evolution equations as

t
dBr

dt
=

∞∑
s=0

Rr,sBs for Rr,s =




QT T
j,p for r = 2j and s = 2p,

QT c
j,p for r = 2j and s = 2p + 1,

QcT
j,p for r = 2j + 1 and s = 2p,

Qcc
j,p for r = 2j + 1 and s = 2p + 1,

(4.29)

where j, p ∈ � in each case.
The eigenvalues ν of the matrix R ≡ Rr,s then provide the growth rates t ν of

successive modes, while the corresponding eigenfunctions supply the structures of the
corresponding radial perturbations. Because of the factor of t−1 which was introduced
in the definitions of Θ , χ and Υ , and the distinction between perturbations in r and
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in ζ , the eigenvalues ν are related to the growth rates ω defined in § 3 by ω = ν − 1
2
.

Instability in the sense of Tan & Homsy (1987) therefore corresponds to ν > 1, while
instability in the sense of a growing perturbation to the r-position of the ‘middle’ of
each front corresponds to ν > 1

2
.

In principle, R is a matrix of infinite rank. In practice, we calculate an approximation
RN of rank 2N+2 by considering only the eigenfunctions Φ0 to ΦN and Ψ0 to ΨN . (The
quantity N was typically taken to be between 5 and 10: we find that the structure
of the more rapidly growing modes is dominated strongly by the lowest radial
eigenfunctions, and so the approximation is good. For brevity, detailed verification of
this point is omitted below.)

5. Results
We now discuss the results of the stability analysis for a variety of interesting cases.

We first briefly consider cases when the viscosity depends only on the temperature or
only on the composition of the fluid, and our results are comparable to those of Tan
& Homsy (1987). We then investigate what happens when both fronts are unstable
or when one front is unstable and the other is stable.

5.1. Values of parameters

In principle, the only restriction on the Péclet numbers is that the ratio Pc/PT  1:
any absolute value of Pc or PT can be attained by varying the injection rate Q̂. For
computational convenience, we will concentrate on cases where Pc � 1000 and Pc/PT

is between 20 and 100. Our results suggest that this difference in the diffusivities is
sufficient to reveal the physical structure of the problem; it also accords with the
solutions for reacting fronts presented by Jupp & Woods (2003), which employed
Pc/PT = 20.

We need also consider only a fairly narrow range of βT and βc, since the mobility
ratio is an exponential function of βT and βc. We consider values in the range
|βT,c| � 10, which are comparable to those considered in previous studies.

The porosities of porous media may vary considerably, as may their specific heat
capacities. Typical porosities for natural rocks range between 0.1 and 0.4, though they
may be somewhat higher or lower than this, while the specific heat capacities of many
common rocks are of the order of 800 J kg−1 K−1 (Bear 1972), and their solid density
is of the order of 2600 kg m−3. The specific heat capacity and density of fresh water
are approximately 4200 J kg−1 K−1 and 1000 kg m−3, while the equivalent values for
mineral oil are around 2000 J kg−1 K−1 and 800–1000 kg m−3 (Somerton 1992). Taking
these values together gives typical values of λ in the range 0.08 to 0.6; to elucidate
the effect of strong coupling, we will occasionally consider values rather higher than
this.

5.2. One unstable and one neutral front

5.2.1. Fluid front unstable; thermal front neutral

We first consider briefly the case in which the fluid front is unstable, βc < 0, and
the thermal front is neutral, βT = 0. The structure of the eigenvalue spectrum is
illustrated in figure 5(a), and the radial structure of the perturbations is illustrated in
figure 5(b, c): both of these are representative of conditions across a wide range of
parameter values.

We first consider the eigenvalues (figure 5a). The eigenvalue spectrum is discrete,
in contrast to those typically found by applying a quasi-steady theory to rectilinear
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Figure 5. Illustrative eigenvalue spectrum and radial structure of fastest-growing perturba-
tions for m= mmax when fluid front is unstable and thermal front is neutral: βc = − 5,
βT = 0, PT = 5, Pc = 100, λ= 0.6. (a) Eigenvalues ν+

j (m) corresponding to χ �= 0 modes (solid
with + symbols) and ν−

j (m) corresponding to χ = 0 modes (dashed); (b) thermal and solute
perturbations Θ(ζ ) (solid; exaggerated by factor of 30), χ(ζ ) (dashed); (c) flux perturbation
Υ (ζ ).

displacements (Manickam & Homsy 1993), and eigenvalues occur in pairs ν
±
j (m),

which reduce as m → 0 to the eigenvalues of Lc, νj = −j (see § 4.2). The highest
eigenvalue is ν+

0 (m), which reduces to ν0 = 0 at m =0, and the results for this eigenvalue
agree well with the data presented by Tan & Homsy (1987). In each pair of eigenvalues,
ν+

j corresponds to an eigenvector for which χ �= 0, while ν−
j corresponds to an

eigenvector for which χ = 0, and represents the decay of the temperature perturbation
under passive diffusion and the spreading of the front.

Tan & Homsy’s analysis was designed to capture only one eigenvalue for a given
set of parameters, and so it did not reveal the behaviour of the higher radial modes.
An interesting feature which the eigenfunction analysis reveals is that for sufficiently
high values of Pc and −βc, a second radial mode ν+

1 (m) also becomes unstable,
with a preferred wavenumber slightly lower than that of the most unstable mode.
In the weakly nonlinear regime this second growing mode might interact with the
most unstable mode to produce effects such as the spreading and tip-splitting of
fingers (q.v. the analysis for immiscible Hele-Shaw flow by Miranda & Widom 1998);
however, this lies beyond the scope of the current study.

The most striking feature of the structure of the fastest-growing perturbation
(figure 5b, c) is that both the solute perturbation χ(ζ ) and the thermal perturbation
Θ(ζ ) are dominated by the zero-eigenfunctions (Ψ0(ζ ) and Φ0(ζ ) respectively). Con-
sequently, the solute perturbation is a single ‘hump’ centred on ζ =1/2, while the
thermal perturbation is a rather wider hump centred approximately on ζ = λ/2. The
structure of the velocity perturbation Υ (ζ ) (figure 5c) is also dominated by a single
extremum, but decays more slowly away from the front position, especially outwards
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from it, reflecting its algebraic asymptotic behaviour in ζ as opposed to the exponential
decay of Θ(ζ ) and χ(ζ ).

The dominance of Ψ0(ζ ) in χ(ζ ) reflects the structure of the eigenvalue spectrum. In
the limit m → 0, each eigenvalue pair ν

±
j (m) reduces to νj = −j , and the corresponding

eigenfunctions similarly reduce to χ(ζ ) = Ψj (ζ ), as in § 4.2. This eigenfunction
continues to dominate the structure of the perturbation for higher m, although
as m increases so does the presence of other components Ψj .

However, the temperature perturbation Θ(ζ ) plays no part in the stability of
the front, and so the dynamical explanation given above for χ(ζ ) cannot apply to
it. Rather, Φ0(ζ ) dominates the passive temperature perturbation for two reasons.
First, because the zero eigenfunction varies least rapidly in space, it is reduced least
by radial diffusion. The second mechanism is best understood by considering the
dynamics along the centreline of a ‘finger’, θ = 0. The perturbation to radial velocity
has a single extremum in the region of the fluid front, and so it is locally slowly-
varying in the region of the thermal front. Consequently, its effect is, to leading
order, to slightly increase or decrease flow in this region, and thus to slightly advance
or retard the position of the thermal front. As we have seen, such an advance or
retardation corresponds to perturbing the basic state Tb(ζ ) by an amount proportional
to Φ0(ζ ). Since these arguments apply in general to the front perturbations, we find
that in general the zero eigenfunctions dominate the structure of the fastest-growing
perturbations.

A second feature of figure 5(b) is that the solute perturbation is very much larger
than the thermal perturbation. This occurs primarily because it is much less affected
by diffusion, but also because the forcing induced by the velocity perturbation Υ is
rather weak at the position of the thermal front. A parameter study varying λ and PT

(omitted here for brevity) suggests that these effects are comparable in magnitude.

5.2.2. Thermal front unstable; fluid front neutral

We also consider briefly the case where the instability occurs on the thermal front
and there is no viscosity change across the fluid front. This is illustrated in figure 6.

Where the instability is controlled only by the diffusing thermal front, we may
obtain the eigenvalues immediately from the analysis of the diffusing solute front by
rescaling. The crucial rescalings are to define a new time variable t ′ = λ−1t and to set
Pc = λPT : the rescaled equation (2.6) then becomes identical to the original equation
(2.7), and so the highest eigenvalues ν are the same in the two cases. Following this
rescaling, our results for the highest eigenvalue again compare well with those of Tan
& Homsy (1987).

The structure of the eigenvalue spectrum (figure 6a) is similar to that for the fluid-
front instability, with pairs of eigenvalues ν

±
j (m) and a single most-unstable mode

ν+
0 (m). We have this time denoted by ν+

j (m) the eigenvalue branches for which Θ �= 0
and by ν−

j (m) the branches for which Θ =0 and the growth rate represents the passive
diffusion of solute. This introduces a slight notational anomaly, which is that because
Pc  PT the Θ = 0 eigenvalues are higher than those which include a temperature
perturbation, except for the range of m in which the dynamic instability on the front
is able to overcome diffusion.

The structures of both thermal and solute perturbations (figure 6b) are again
dominated by the zero-eigenfunctions Ψ0(ζ ) and Φ0(ζ ), and the flux perturbation
Υ (ζ ) (figure 6c) has its maximum slightly inwards of the unstable front; because of
the lower value of mmax than in the previous case, the decay of Υ (ζ ) away from the
front is rather slower than in figure 5.
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Figure 6. Illustrative eigenvalue spectrum and radial structure of fastest-growing perturba-
tions for m= mmax when thermal front is unstable and fluid front is neutral: βc = 0, βT = −10,
PT = 20, Pc = 500, λ= 0.5. (a) Eigenvalues ν+

j (m) corresponding to Θ �= 0 modes (solid
with + symbols) and ν−

j (m) corresponding to Θ = 0 modes (dashed with stars); (b) thermal
and solute perturbations Θ(ζ ) (solid) and χ(ζ ) (dashed); (c) flux perturbation Υ (ζ ).

5.3. Two fronts

We now consider the more general cases in which the viscosity changes across both
the fluid front and the thermal front.

When both fronts are unstable, the greater fluid Péclet number means that the
instability on the fluid front is suppressed much less by diffusion than that on the
thermal front, and so the overall instability comes to be controlled by the fluid front. In
§ 5.3.1, we investigate how much the instability or stability of the thermal front affects
the perturbations. When the thermal front is unstable but the fluid front is stable,
on the other hand, there is the opportunity for a rather complicated interaction
between the highly localized solute perturbation and the more diffuse thermal
perturbation: we consider this in § 5.3.2.

5.3.1. Fluid front unstable; thermal front stable or unstable

The extent to which the thermal front can modify the stability of the system is
illustrated in figure 7, which shows the highest eigenvalues for βc = −1 and a range of
values of βT , for three values of λ. As λ increases, the velocity perturbation associated
with each front ‘sees’ more of the viscosity contrast associated with the other front,
and so the dynamics become more strongly coupled. This shows up in the much
greater spread of the eigenvalues plotted for λ= 0.75 (figure 7c) compared to those
for λ=0.25 (figure 7a).

In general, the effect of the thermal front is only to modify slightly the stability of the
system, which is principally determined by the fluid front. In particular, an unstable
thermal front can enhance the growth rates of the most unstable perturbations
substantially at low m, and a stable thermal front generally reduces growth rates,
again particularly at low m. As m increases, the perturbations become more strongly
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localized (cf. § 3), so the thermal front exerts less influence on the fluid front, and this
shows in the convergence of the eigenvalues for different values of βT .

At very high values of λ, it is possible for a strongly stable thermal front to reduce
the instability of the fluid front substantially (figure 7c). It is interesting that even
though the stabilization is most marked for high values of m, the strong coupling at
low wavenumbers tends to increase the most unstable wavenumber, leading to rather
a sharp cut-off for m>mmax. This is discussed further below.

To illustrate the coupling process, figure 8 shows the fastest-growing perturbations
for a slightly unstable fluid front (βc = − 0.68) when λ=0.5, both when the thermal
front is strongly unstable and when it is strongly stable.
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When the fluid front is weakly unstable and the thermal front is strongly unstable
(figure 8a), the overall instability of the system is enhanced, and the most unstable
wavenumber may be substantially reduced. (For high Pc and PT and small βT and
βc, separate local maxima may occur corresponding to instabilities localized around
each front, but the two maxima merge smoothly as the degree of instability increases.)
Because of the higher solute Péclet number, the solute perturbation χ(ζ ) is rather
larger than the thermal perturbation Θ(ζ ); however, because |βT | is substantially
larger than |βc|, both perturbations contribute significantly to the perturbation to
viscosity, and hence to the velocity perturbation. Consequently, there is quite a wide
region (from the innermost point of the thermal front to the outermost of the fluid
front) in which velocity and viscosity are perturbed.

The fastest-growing branch of perturbations, which correspond to the eigenvalues
ν+

0 (m), are sinuous in character, with both Θ and χ > 0, indicating that both fronts
have been infinitesimally retarded. Recalling the ‘thin-front’ results of Cardoso &
Woods (1995) and of § 3, it is interesting also to consider briefly the secondary branch
which corresponds to ν−

0 (m). We expect this to be varicose in character, and figure 9
indicates that this is the case. On this branch, the perturbations to temperature
and viscosity have opposite signs. They therefore induce opposing perturbations to
viscosity, and so the fluid front acts as a barrier to the velocity perturbation induced
by the thermal front, causing it to be strongly localized. The competition between the
frontal perturbations explains the strong decay of this branch of the perturbations.
Comparing the analysis of § 3, we note that because diffusion allows much stronger
communication between the perturbations on the two fronts, it weakens the varicose
mode much more strongly compared to the ‘thin-front’ case than it does the sinuous
mode in which the perturbations assist each other.

When the fluid front is weakly unstable but the thermal front is strongly stable
(figure 8b), the overall viscosity profile may favour stability: in this case, the
basic viscosity profile decreases monotonically outwards even across the fluid front.
However, an instability occurs which is strongly localized around the fluid front and
so barely perturbs the temperature field. In the region of this instability, a positive
velocity perturbation ‘pulls forward’ both the thermal and the solute components
of the viscosity field; since the solute component is advected more strongly than
the thermal by a factor λ−1, and is reduced less in magnitude by diffusion, the net
perturbation in the viscosity field at the fluid front is negative, and instability occurs.
Thus, even though the overall background viscosity profile appears stable, the different
rates of heat and fluid transport allow the development of a localized instability. This
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instability of an apparently stable viscosity profile complements the effect noted by
Manickam & Homsy (1993) for a non-monotonic µ(c) relationship, when a localized
instability can develop from a non-monotonic viscosity profile even though the global
viscosity contrast across the front is stable. It is also analagous to the instability of an
apparently statically stable density profile in double-diffusive convection (see Turner
1979, chap. 8).

As figure 7(c) illustrates, it is extremely difficult to stabilize this fluid-front instability
completely, even for high values of λ. However, because it is strongly localized it is
vulnerable to diffusion at high m; combined with the dynamic stabilization through
the velocity perturbation at low m, this narrows the window of unstable wavenumbers
considerably as λ and βT increase.

The difference in stability is illustrated in figure 10, which shows the variation in
νmax and mmax for two different values of Pc, as λ and βT are varied keeping the fluid
front viscosity contrast βc and the ratio Pc/PT fixed.

These plots illustrate the essential role of λ in controlling the coupling between the
fronts. The relative change in the range of maximum eigenvalues is roughly the same
for λ= 0.75 for both cases considered, but especially for the higher Péclet numbers
(for which the perturbations are more strongly localized) the variation only becomes
significant for λ� 0.5. This suggests that in most porous rocks, it is difficult for
temperature variations to stabilize significantly a slightly unstable fluid front. (The
stabilizing effect of the thermal front also decreases as the ratio Pc/PT increases,
increasing the relative effect of diffusion on the thermal front and thus weakening its
ability to affect the fluid front.)

Overall, the variation in mmax is not great, with the preferred wavenumber remaining
within 1 or 2 of its value for the isolated fluid front. The exception occurs when βT

is large and negative, when the preferred wavenumber which is obtained becomes a
compromise between the preferred scales of the thermal and fluid front instabilities.

5.3.2. Thermal front unstable; fluid front stable

The final case which we will consider occurs when the fluid front is stable, βc > 0,
and the thermal front is unstable, βT < 0. In this case, the stable fluid front may act
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as a barrier to the perturbation induced on the unstable thermal front, in the same
way as for the varicose mode of § 5.3.1 (figure 9b). The dynamics are rather different
from those which occur when a stable thermal front affects an unstable fluid front,
because the stabilizing influence is now strongly localized.

Figure 11 illustrates the extent to which the fluid front can stabilize the thermal
front for two values of PT . (We found that the ratio Pc/PT was not important in this
case, once it became large enough that the fluid front was much narrower than the
thermal front.)

The trend is not quite so clear as before, partly because the growth rate and
preferred wavenumber of the thermal front even for βc =0 increase with λ (we recall
that the crucial quantity in this case is λPT ). However, the effect of the fluid front in
stabilizing the thermal front is evident, particularly for higher values of λ. This trend
too is slightly weaker, because the more diffuse thermal perturbation naturally ‘sees’
obstacles further away than the fluid perturbation did. As before, the dependence of
the growth rate on λ is more marked for higher Péclet numbers PT .

Figure 12 illustrates the eigenvalue spectrum for two of the cases shown in figure 11.
The overall structure is similar to the cases considered previously, but there is a new
feature, which is that some of the eigenvalues are now complex, ν = νr + iνi . These
complex eigenvalues are formed when two adjacent eigenvalues coalesce to form a
complex-conjugate pair with correspondingly complex-conjugate eigenfunctions: the
pair which merge may be the upper and lower parts of one branch, as in the merger
of ν

±
0 (m) at m =5 in figure 12(a), or they may belong to different branches, as in the

merger of ν−
0 (m) and ν+

1 (m) at m = 4 in figure 12(b).
In general, the formation of complex eigenvalues appears to be more common on

the lower eigenvalue branches than on the uppermost branch ν
±
0 (m), and when it

does occur on the uppermost branch this tends to be for values of m > mmax. Cases
for which Im(νmax) �= 0 occur only at the limits of the parameter range considered
here, when the growth of the instability is sufficiently suppressed that mmax = 1. For
example, for λ= 0.75, βT = −10, βc = 2, PT = 3 and Pc = 50, we find mmax = 1 with
νr = 0.144 and νi =0.072.



154 D. Pritchard

–3

–2

–1

0

1

2

0 1 2 3 4 5 6 7
–3

–2

–1

0

1

2

0 2 4 6 8 10 12

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

0 1 2 3 4 5 6 7
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

0 2 4 6 8 10 12
m m

νr

νi

(a) (b)

Figure 12. Real and imaginary parts of eigenvalues ν(m) for βT = −10, βc = 1, λ= 0.75:
(a) Pc = 200, PT = 10; (b) Pc = 400, PT = 20.

Although this phenomenon is not likely to dominate the observed instability in most
physically realizable cases, there are at least two reasons for seeking to understand
it. First, as figure 12 a illustrates, the coalescence of the eigenvalues as m increases is
associated with a sharp drop in ν+

0 , and therefore the physical mechanism represented
by the complex eigenvalues plays an important part in stabilizing the perturbation
at values of m slightly above mmax, and thus in determining mmax itself. Second,
since in at least some cases the complex eigenvalues have positive real parts, they
may be physically relevant to the nonlinear development of the instability. (We recall
that since growth rates are algebraic in t , the difference in magnitude between the
growing modes is likely to be established rather slowly.) We now therefore consider
the phenomenon in some detail.

Physically, the presence of complex eigenvalues ν± = νr ± iνi means that the
instability has an oscillatory character. If we define the corresponding eigenvectors
B± = Br ± iBi , then we can write the evolution equations for these two modes as

t
d

dt

(
Br

Bi

)
=

(
νr νi

−νi νr

)(
Br

Bi

)
. (5.1)

For oscillatory growth to occur, νr > 0, the imaginary component must encourage
its own growth as well as that of the real component, while the real component
encourages its own growth but tends to suppress that of the imaginary component.

We can then write the evolving physical part of the perturbation B as

Re(Beimθ ) = B0t
νr cos(mθ) [Br (ζ ) cos(τ ) − Bi(ζ ) sin(τ )] , (5.2)

where B0 is an initial amplitude, τ ≡ ϕ + νi log t is the ‘phase time’ of the oscillation,
and ϕ is a phase angle which represents the relative magnitudes of the Br and
Bi components at time t = 1. The fingers are stationary in the azimuthal direction,
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with ‘positive’ fingers centred on θ = 2nπ/m (n ∈ �) and ‘negative’ fingers at θ =
(2n + 1)π/m, and the ‘envelope’ of maximum finger amplitude grows as t νr ;
superimposed on this algebraic growth is an oscillatory component, represented by
the term cos(τ ). The oscillation of the Bi component leads that of the Br component
by π/2. This is illustrated in figure 13.

A consequence of the oscillation is that for most of the time, the amplitude of the
perturbation is lower than the purely algebraic growth rate t νr would suggest (figure
13). However, the growth rate d|B|/dt may be lower or higher.

We now consider the radial structure of the perturbations. Figure 14 shows the
structure of the most unstable mode (m = 3), and figure 15 a shows the corresponding
structure of the first complex mode (m = 5) at τ =0, for the case plotted in figure 12(a).
The structure of the most unstable perturbation is sinuous, with the temperature
perturbation effect controlling the viscosity perturbation except in a small region
around the fluid front, where the sudden increase in viscosity produces a barrier to
the velocity perturbation. Consequently the velocity perturbation is limited in extent
and in magnitude, and so the fluid front stabilizes the thermal front.

The first complex mode is also sinuous at τ = 0: the difference is that the relative
importance of the fluid perturbation is rather greater, and it is able to produce a
much stronger barrier by locally reversing the viscosity perturbation. This is the first
of the two physical mechanisms which are required for oscillations; the second is
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Note smaller vertical scale in (c) and (d).

that because the solute perturbation χ(ζ ) is only weakly affected by diffusion, it
responds more slowly to increases or decreases in the local velocity perturbation than
the thermal perturbation Θ(ζ ) does. We recall that both of these mechanisms were
absent in the ‘thin-front’ analysis of § 3, in which complex eigenvalues were impossible.

Figure 15 illustrates how these mechanisms operate. At τ = 0 (figure 15a), the
perturbation is sinuous. The negative thermal perturbation Θ leads to a mainly
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negative viscosity perturbation N which in turn drives a positive flux perturbation
Υ . However, this flux perturbation is restricted by the barrier of increased viscosity
around the fluid front which is caused by the negative perturbation χ . Consequently,
the flux is not sufficient to maintain the amplitude of the thermal and solute
perturbations relative to the algebraic growth t νr , and they both decay under diffusion
(τ = π/4, figure 15b). Being more affected by diffusion, the thermal perturbation decays
faster, and so the relative importance of the viscosity barrier grows, accelerating the
process further. By τ = 3π/8 (figure 15c), the flux perturbation has reversed in the
vicinity of the fluid front, and a little later (τ = 7π/16, figure 15d), it has reversed
everywhere. At this point, the thermal perturbation has also been reversed, but
the solute perturbation has yet to follow suit. Consequently, both perturbations
contribute a net increase in viscosity, which tends to amplify the now negative flux
perturbation. A little time later (τ = π/2, figure 15e), the positive thermal perturbation
and the negative flux perturbation have each grown somewhat, reinforcing each
other; the solute perturbation has now changed sign and it once again opposes the
effect of the thermal perturbation, but is is still relatively weak compared to the
thermal perturbation. As time goes on, both perturbations grow (τ = 11π/16, figure
15f ), but the solute perturbation grows faster because of the lower solute diffusion.
Finally, by time τ = π the perturbation has completely inverted itself, and the process
repeats.

6. Summary and conclusions
We have investigated the stability of the coupled thermal and fluid front system

which results when fluid is injected from a line source into a thin horizontal saturated
porous layer. When the viscosity of the fluid depends on both its composition and
its temperature, viscous fingering may occur on either front, and a simplified model
of the dynamics is sufficient to illustrate how the frontal instabilities couple, and how
this coupling is controlled by the azimuthal wavelength m of the instability and by
the relative thermal velocity λ.

The fingering instability on the thermal front is controlled by the diffusive
redistribution of heat, and we have considered miscible fluids so that the instability
on the fluid front is also controlled by diffusion. It is then possible to investigate
the linear stability of the system by employing the eigenfunction decomposition
method recently applied to miscible rectilinear displacements by Ben et al. (2002).
This approach reveals that, in general, the linearized system possesses a discrete
spectrum of eigenvalues corresponding to the growth rates of perturbations. The
fastest-growing perturbations are dominated by a radial structure which corresponds
to infinitesimally advancing or retarding the position of each front (cf. Barenblatt
1996, § 8.3). When the viscosity changes only across the fluid front, the growth rates
of these most unstable perturbations agree with the results presented by Tan &
Homsy (1987), and we have indicated how this analysis may be extended by a
simple rescaling to cases in which the viscosity changes only across the thermal
front.

When both fronts are unstable, the wavelength and growth rate of perturbations
are controlled mainly by the properties of the fluid front, because of the much higher
Péclet number associated with solute as opposed to thermal diffusion. However, when
the thermal lag is not great and when the viscosity change across the thermal front
is somewhat greater than that across the fluid front, the properties of the thermal
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front may make a noticeable difference to the overall stability of the double-front
system.

As for the ‘thin-front’ model considered by Cardoso & Woods (1995) and in § 3 of
the current paper, the ‘varicose’ mode of instability in which the front perturbations
are out of phase is substantially more stable than the ‘sinuous’ mode in which the
perturbations are in phase. It is also strongly affected by diffusion, and decays strongly
for large m.

When the fluid front is weakly unstable and the thermal front is stable, instabilities
which are strongly localized about the fluid front can develop even when the viscosity
profile is monotonically decreasing across the front, because of the different rates
of advection of the fluid compositional properties and temperature. It is possible in
principle for a weakly unstable fluid front to be stabilized by a sufficiently stable
thermal viscosity gradient. However, the cases we have considered suggest that this
effect is only significant for rather high values of the relative thermal velocity λ and
when the thermal viscosity contrast is many times greater than the viscosity contrast
across the fluid front. This has important practical applications, because it suggests
that even when fluid is injected into a relatively warm medium (for example in the
context of geothermal reservoir recharge), instabilities are likely to grow almost as
fast as in the absence of the stabilizing temperature gradient.

The final case which we have considered occurs when the fluid front is weakly
stable but the thermal front is unstable. In this case, the fluid front is generally
unable to stabilize completely the instability centred on the thermal front; however,
it provides a localized barrier to the developing velocity perturbation which can
substantially affect the behaviour of the instability. A peculiar phenomenon which
can result is an oscillatory instability (illustrated in figure 15), in which the maximum
amplitude of the perturbations grows algebraically in time, but their sign varies. This
behaviour depends crucially on the different rates of solute and thermal diffusion,
which means that the perturbations to the fluid and thermal fronts take different
times to respond to changes in the fluid velocity, and so a mild hysteresis effect is
introduced.

The principal conclusion of this work is that for the stability of an injection
process to be assessed, the viscosity changes associated with thermal and composition
differences must be considered separately: in general, if either change promotes
fingering, then an instability is likely to develop, although its rate of growth may be
modified significantly by the coupling.

Since recent studies (e.g. French 2002; Jupp & Woods 2003) have considered
reactions driven by thermal and compositional changes during injection processes, a
natural extension of the current work would be to incorporate such reactions and
the associated changes in fluid properties and the permeability of the porous matrix.
Given the complex coupling revealed by the current analysis, and following recent
studies of reaction-driven or -controlled instabilities (e.g. Chadam et al. 2001; de Wit
2001; Fernandez & Homsy 2003), we expect such coupled systems to exhibit a rich
range of dynamics which will make them of considerable interest to the theoretician
as well as to the chemical or petroleum engineer.

I am extremely grateful to Professor Andrew Woods for suggesting this study and for
several stimulating and helpful discussions. I am also grateful to Professor Anthony
Pearson and to two anonymous referees for their comments on the manuscript.
This work was supported financially by the Newton Trust through the B. P.
Institute.
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Appendix A. Details of the thin-front stability analysis
The coefficients Cij in equation (3.2) are given by

C11 = −1

2
+

1

2
m(1 − M1)

M∞(1 + λm) + M1(1 − λm)

M1(1 + M∞)(1 + λm) +
(
M∞ + M2

1

)
(1 − λm)

, (A 1)

C12 =
mλ(m+1)/2(M1 − M∞)

M1(1 + M∞)(1 + λm) +
(
M∞ + M2

1

)
(1 − λm)

, (A 2)

C21 =
mλ(m−1)/2M∞(1 − M1)

M1(1 + M∞)(1 + λm) +
(
M∞ + M2

1

)
(1 − λm)

, (A 3)

C22 = −1

2
+

1

2
m(M∞ − M1)

(1 + λm) + M1(1 − λm)

M1(1 + M∞)(1 + λm) +
(
M∞ + M2

1

)
(1 − λm)

(A 4)

(recall that M0 = 1).
We may also show that the roots ω± defined by equation (3.3) are real. The

determinant in equation (3.3) can be written as

C2
11 + C2

22 − 2C11C22 + 4C12C21 = (M1 − M∞)2(M1 − 1)2(λm − k+)(λm − k−), (A 5)

where

k± =
M2

1 + M∞ ± 2M1

√
M∞

(M1 − M∞)(M1 − 1)
. (A 6)

The variable λm is constrained to be between 0 and 1, and the determinant is a
concave parabola in λm; hence the range in which the determinant is negative lies
between the roots λm = k±, and we need to show that this interval does not overlap
(0, 1). If one of the roots k± is greater than 0 while the other is less than 0, we must
have M2

1 +M∞ < 2M1

√
M∞, and by the triangle inequality this is impossible. Similarly,

we can define

K± = k± − 1 =
M1(1 + M∞ ± 2

√
M∞)

(M1 − M∞)(M1 − 1)
, (A 7)

and for one of these roots to lie on each side of 0, we would require 1+M∞ < 2
√

M∞;
again applying the triangle inequality, this is impossible. We conclude that whatever
the ratio of mobilities, the radial structure introduced by diffusion is essential in this
problem for the development of complex perturbation growth rates (see § 5.3.2).

Appendix B. Details of numerical methods
B.1. Rescaling the eigenfunctions

A natural definition of the prefactors Gj and Hj is to relate them to the inner
products (4.20) and (4.22), and to define

Gj = P
λPT /2+1
T

�(j + 1)

�
(
j + 1

2
λPT + 1

) , Hj = P Pc/2+1
c

�(j + 1)

�
(
j + 1

2
Pc + 1

) . (B 1)

These prefactors were used for small PT and Pc. For high Péclet numbers, however,
they become extremely small, and it is useful for computational purposes instead to
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define
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B.2. Shooting method for �T
p (ζ )

Equations (4.26) do not have closed-form solutions, and so must be integrated
numerically for each set of parameter values. We develop asymptotic representations
of �T

p (ζ ) in each limit, with one free parameter in each, and use these to initialize the
integrations at the points ζ0 � 1 and ζ∞  1; we then shoot inwards, adjusting the
two free parameters so that �T

p and d�T
p /dζ match at ζ =1. The numerical methods

used were the globally convergent Newton’s method and the Kaps–Rentop numerical
integration routine suitable for stiff equations, as implemented by Press et al. (1992).

In the limit ζ → ∞, the terms ∂Tb/∂ζ , ∂cb/∂ζ and φp(ζ ) all become exponentially
small, and it is simple to obtain the decaying solutions to equation (4.26),

�T
p (ζ ) ∼ ΩT

∞ζ −m/2, (B 3)

for some constant ΩT
∞ which must be determined by shooting.

In the limit ζ → 0, the asymptotic order of the terms in equation (4.26) depends
on the relative magnitudes of m, λPT and Pc, and in general a series solution requires
expansion in irregular powers of ζ . The leading-order term in such an expansion must
be of the form

�T
p (ζ ) ∼




Ω0ζ
m/2 if m < λPT

Ω0ζ
m/2 − 1

4
mβT L0ζ

m/2 log ζ if m = λPT

m2βT L0

m2 − λ2P 2
T

ζ λPT /2 if m > λPT ,

(B 4)

where L0 = L(λPT /2)
p (0), and where Ω0 is again to be obtained by shooting. Noting

that we expect PT in general to be a reasonably large quantity, we approximate �T
p

near the origin as the sum of the terms proportional to ζm/2 and ζ λPT /2, regardless of
whether this is a formally correct expansion or not. By varying the points ζ∞ and ζ0

at which the boundary conditions are applied, we have confirmed that the shooting
results do not depend sensitively on the handling of the boundary conditions.

An exactly analogous method was employed to calculate �c
q (ζ ).

Appendix C. Inner products in the eigenvalue problem
We describe in detail only the construction of the evolution equations for the

amplitudes AT
p (t), since the results for Ac

q(t) follow immediately from these.
We take the inner product 〈·, ·〉T of equation (4.8) with the radial eigenfunctions

Φj (ζ ) for the temperature field. The time-derivative term gives〈
t
∂Θ

∂t
, Φj (ζ )

〉
T

=

〈
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∂
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The radial-derivative term gives

〈LT Θ , Φj (ζ )〉
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The azimuthal-derivative term gives
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p=0

AT
p (t)

∫ ∞

0

GjGpe−PT ζ ζ λPT /2−1L(λPT /2)
p (PT ζ )L(λPT /2)

j (PT ζ ) dζ, (C 8)

and by expanding the Laguerre polynomials we obtain

−1

4

m2

PT

〈
Θ

ζ
, φj (ζ )

〉
T

= −1

4

m2

PT

∞∑
p=0

P
−λPT /2
T DT

j,pGjGpAT
p (t), (C 9)

where

DT
j,p = �

(
p +

1

2
λPT + 1

)
�

(
j +

1

2
λPT + 1

)

×
p∑

r=0

j∑
s=0

(−1)r+s�
(
r + 1

2
λPT + s

)
�(j − s + 1)�

(
s + 1

2
λPT + 1

)
�(s + 1)

�(p − r + 1)�
(
r + 1

2
λPT + 1

)
�(r + 1)

=
2

λPT

�
(
J + 1

2
λPT + 1

)
�(J + 1)

, (C 10)

where J = min(j, p). Finally, we consider the term which corresponds to the advective
transport of heat,

−1

2

λ

KT

〈
Υ (ζ, t)e−PT ζ ζ λPT /2−1, Φj (ζ )

〉
T

= −1

2

λ

KT

〈( ∞∑
p=0

AT
p (t)�T

p (ζ ) +

∞∑
q=0

Ac
q(t)�

c
q (ζ )

)
e−PT ζ ζ λPT /2−1, Φj (ζ )

〉
T

. (C 11)

The inner product can be written as

〈
Υ (ζ, t)e−PT ζ ζ λPT /2−1, Φj (ζ )

〉
T

=

∞∑
p=0

GjI
T
j,pAT

p (t) +

∞∑
q=0

GjI
c
j,pAc

q(t), (C 12)
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where the coefficients I T
j,p and I c

j,p are defined as

I T
j,p =

∫ ∞

0

e−PT ζ ζ λPT /2−1L
(λPT /2)
j (PT ζ )�T

p (ζ ) dζ, (C 13)

I c
j,p =

∫ ∞

0

e−PT ζ ζ λPT /2−1L
(λPT /2)
j (PT ζ )�c

p(ζ ) dζ. (C 14)

The quantities I T
j,p and I c

j,p must be evaluated numerically along with the functions

�T,c
p (ζ ).
In a similar fashion, we take the inner product 〈·, ·〉c of equation (4.9) with the

eigenfunctions Ψj (ζ ), obtaining the terms〈
t
∂χ

∂t
, Ψj (ζ )

〉
c

=
H 2

j

P
Pc/2+1
c

�
(
j + 1

2
Pc + 1

)
�(j + 1)

t
dAc

j

dt
; (C 15)

〈Lcχ , Ψj (ζ )〉
c
= −j

H 2
j

P
Pc/2+1
c

�
(
j + 1

2
Pc + 1

)
�(j + 1)

Ac
j ; (C 16)

−1

4

m2

Pc

〈
χ

ζ
, Ψj (ζ )

〉
c

= −1

4

m2

Pc

∞∑
p=0

P −Pc/2
c HjHpDc

j,pAc
p(t) (C 17)

for

Dc
j,p =

2

Pc

�
(
J + 1

2
Pc + 1

)
�(J + 1)

, (C 18)

where J = min(j, p) as before; and finally,

− 1

2Kc

〈
Υ (ζ, t)e−Pcζ ζ Pc/2−1, Ψj (ζ )

〉
c
= − 1

2Kc

( ∞∑
p=0

HjJ
T
j,pAT

p (t) +

∞∑
q=0

HjJ
c
j,pAc

q(t)

)
,

(C 19)

where

J T
j,p =

∫ ∞

0

e−Pcζ ζ Pc/2−1L
(Pc/2)
j (Pcζ )�T

p (ζ ) dζ, (C 20)

J c
j,p =

∫ ∞

0

e−Pcζ ζ Pc/2−1L
(Pc/2)
j (Pcζ )�c

p(ζ ) dζ. (C 21)

Combining these expressions, we obtain the coupled amplitude evolution equations
(4.27), where the coefficients Qkl

j,p , where k, l = T or c, are given by

QT T
j,p = −j δj,p − �(j + 1)

�
(
j + 1

2
λPT + 1

)
[

m2

4

Gp

Gj

DT
j,p +

P
λPT /2+1
T

Gj

λ

2KT

IT
j,p

]
, (C 22)

QT c
j,p = − �(j + 1)

�
(
j + 1

2
λPT + 1

) P
λPT /2+1
T

Gj

λ

2KT

I c
j,p, (C 23)

QcT
j,p = − �(j + 1)

�
(
j + 1

2
Pc + 1

) P Pc/2+1
c

Hj

1

2Kc

J T
j,p, (C 24)

Qcc
j,p = −j δj,p − �(j + 1)

�
(
j + 1

2
Pc + 1

) [m2

4

Hp

Hj

Dc
j,p +

P Pc/2+1
c

Hj

1

2Kc

J c
j,p

]
. (C 25)
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